

Linuxgym: A sustainable and easy-to-use automated
developmental assessment tool for computer scripting
skills

Final project report December 2008

Project Team

Lead Institution

UNIVERSITY OF TECHNOLOGY, SYDNEY

Dr. Andrew Solomon, Prof. Jenny Edwards (Project Leaders)
Dr. Raymond Lister

Partner Institutions

UNIVERSITY OF SYDNEY

Assoc. Prof. Judy Kay

UNIVERSITY OF NEW SOUTH WALES

Dr. John Shepherd

Web sites

http://linuxgym.sourceforge.net/ http://linuxgym.com/

Acknowledgements

Support for this project has been provided by the Australian Learning and
Teaching Council, an initiative of the Australian Government Department of
Education, Employment and Workplace Relations. The views expressed in
this report do not necessarily reflect the views of the Australian Learning and
Teaching Council Ltd.

This work is published under the terms of the Creative Commons Attribution-
Noncommercial-ShareAlike 2.5 Australia Licence. Under this Licence you
are free to copy, distribute, display and perform the work and to make
derivative works.

Attribution: You must attribute the work to the original authors and include
the following statement: Support for the original work was provided by the
Australian Learning and Teaching Council Ltd, an initiative of the Australian
Government Department of Education, Employment and Workplace
Relations.

Noncommercial: You may not use this work for commercial purposes.

Share Alike: If you alter, transform, or build on this work, you may distribute
the resulting work only under a license identical to this one.
For any reuse or distribution, you must make clear to others the license
terms of this work.

Any of these conditions can be waived if you get permission from the
copyright holder.

To view a copy of this license, visit
http://creativecommons.org/licenses/by/2.5/au/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105,
USA.

Requests and inquiries concerning these rights should be addressed to the
Australian Learning and Teaching Council, PO Box 2375, Strawberry Hills
NSW 2012 or through the website: http://www.altc.edu.au

2008

Executive Summary

While 10% of all jobs advertised in the IT/telecommunications sector seek
scripting as a skill, it is to the detriment of both industry and education that it
has been very difficult to teach and learn. Developing scripting skills is like
learning a language, or how to drive a car — it requires constant practice and
feedback. However, with universities nowadays having high student:staff
ratios, there is very little scope for providing the necessary feedback. As a
result, within at least one of the participating universities (Solomon et al.,
2006) and more generally (Bennedsen and Caspersen, 2007), coding courses
have typically had a failure rate of over 35%.

On arriving at the University of Technology, Sydney in 2001, Andrew Solomon
identified these problems. In response he developed the alpha version of
Linuxgym, software which automates assessment and feedback of scripting
skills. The use of this software has increased both the depth and breadth of
coding skills learnt. The pass rate of the large student cohorts at UTS
improved to 90% within a year, and over 95% thereafter. The reason for this
improvement is that the software enables automated formative assessment of
coding skills as often as weekly. Furthermore, because it reduces the
university’s cost (in work hours) of assessment through marking assignments,
there is more teacher time for helpful interaction with students.

In 2006 this project funded by the Australian Learning and Teaching Council
(then, the Carrick Institute) commenced for the purpose of redeveloping the
Linuxgym software to be available to all educational institutions. The main
goal was that work involved in installation, maintenance and exercise
development would be minimal. Further goals were to create a broad set of
exercises which could be drawn upon by academics around Australia, and a
clear definition of industry standards with the long term aim of a certification
exam to align Australian universities’ curricula closely to industry’s needs.

In collaboration with three universities, Linuxgym has been redeveloped as
both an installable virtual machine, and a publicly accessible web-service
upon which lecturers are able to create classes, provide students with
Linuxgym accounts, allocate them a set of exercises and view their marks.
With the assistance of the Linux Professional Institute, a survey has been
conducted to clarify which scripting skills are needed in industry, and the
results have influenced the focus of the Linuxgym library. The Linuxgym web-
service has also been made available to the public as an individual learning
tool (http://www.linuxgym.com).

This project has spanned three institutions and over 1000 students and
individuals. Feedback through surveys and students’ marks indicate that
Linuxgym is a helpful and accurate tool for formative assessment.

1. Introduction

The Internet, and the computing world in general, increasingly require high
level conglomeration of their systems and data to provide an efficient and
knowledge-creating information flow between their units and to the outside
world. Unix scripting is a key tool for making flexible use of the data streams.
It is the “glue” which holds together a diverse range of applications in areas
such as banking, telecommunications and genome sequencing to name a few.
The Unix Command-Line Interface (CLI) enables operations which are
arduous or even impossible with a point-and-click Graphical User Interface
(GUI). For example, renaming a large set of files to include an extra extension
could be achieved with a single line of code on the command line, as opposed
to a click and edit for every file in the case of a GUI interface — as such, CLI
skills are of major importance in system administration and networking.

Because learning scripting skills requires considerable practice and feedback,
the typical university’s high student:staff ratio offers very little scope for
providing the necessary feedback, and university degrees have produced only
a small percentage of graduates with the necessary scripting skills.

1.1 Project goals

Between 2002 and 2006 at UTS, Linuxgym automated the provision of
formative feedback on student scripting activities. The goal of this project has
been to make Linuxgym available to all universities and to ensure that it is well
aligned with industry needs. In detail, it provides:

• More practice and feedback for students: Instead of having only one
or two assignments per semester, Linuxgym should enable frequent
practice and immediate feedback keeping the students informed of any
topics into which they need to put more effort.

• Lower marking workload for teachers: With a class of 200 students,
manually marking an assignment takes a whole week.

• Improved student-teacher interaction: The feedback enables students
to be more aware if they’ve misunderstood the question, meaning that

when they interact with the teacher, it’s on a similar wavelength.
Moreover, with less time spent marking, teachers should have more time
for interacting with students.

• Alignment with industry standards: The library should provide a
growing set of topics and exercises which define the scripting skills
required by the IT sector, enabling universities to direct their teaching to
ensure the skills developed make the students more employable.

2. The approach

Although the alpha version of Linuxgym was clearly an improvement to
previous methods of assessment, it came about from the single goal of
reducing the lecturer’s workload. This project involved obtaining a closer
understanding of the set of problems being addressed, followed by a model of
the software which should address these issues.

2.1 The difficulty of formatively assessing scripting skills

The majority of university students have great difficulty in going beyond the
most basic Unix scripting skills. This is because there is insufficient formative
assessment which enables the students to understand where they need to
focus their efforts in learning.

To understand the reason for this we describe the two learning activities (apart
from lectures) used at the University of Technology, Sydney — assignments
and lab exercises. Although this refers to only two courses at one university,
most university education of coding takes place using one or both of these
approaches (Robins, A. et al., 2003).

Problems with assignments

The purpose of setting a practical assignment early in the semester is that
when the student attempts some scripting, the tutor can read and test their
code to identify errors and misunderstandings in order to provide formative
feedback. An assignment later in the semester measures the extent to which
the student has attained the necessary skills — a summative assessment.

Under the university’s funding constraints, a tutor with thirty students is paid
for four hours of marking in a semester. With two assignments in the
semester, this results in four minutes of marking per assignment.

There are two reasons why this is an insufficient formative assessment. First,
four minutes is not enough time to write explanatory feedback. Second, it
takes a significant period before the students have been presented with
sufficient material to do a whole assignment. Together with the time it takes
the tutor to mark the assignments, this formative feedback arrives late in the
semester — often too late for the students to understand and build upon this
feedback.

Furthermore, an accurate assessment of coding — and scripting in particular
— is difficult because there are many ways of performing the same task. It is
sometimes the case that the tutor misunderstands the student’s code,
assuming errors where there is simply a different but valid approach.

Problems with lab exercises (combined with multiple choice tests)

In lead-up to tests, students are given a weekly set of exercises and they may
seek advice from a tutor in an hour-long lab session. Throughout the semester
there are tests to provide feedback on the extent to which the students have
learnt what was intended.

In the typical class of thirty students, this leaves two minutes each week (on
average) for any student to have the attention of the tutor — a total of half an
hour throughout the semester. With this low level of interaction, it is often the
case that both the tutor and the student are unaware of the knowledge gap.
The tutor does not have time to locate the errors, and the student is unable to
identify them.

To increase the amount of formative feedback, the method of testing is
multiple-choice rather than the time consuming assessment of practical
assignments. Unfortunately, a multiple-choice test can be a very inaccurate
assessment of the student’s actual skills and may instead be a representation
of their ability to memorise facts through surface learning (McCracken M., et
al., 2001). Therefore, a student might proceed through such a course
believing they have the necessary skills when they do not.

2.2 The solution

Linuxgym is a tool for presenting problems to be solved by coding. Solutions
are automatically assessed — providing feedback for the students to
understand their errors, to the teachers on what topics need better coverage,
and enabling an accurate assessment of a person’s professional coding skill.

The underlying principle of Linuxgym is that tasks are neither multiple choice
questions nor simulations, but coding as performed in practice — which,
according to Newble and Clarke (Ramsden, 1992), is more likely to bring
about a deeper learning. Linuxgym provokes the students to engage in
authentic activities — in some sense a constructivist approach (Nunes, 2006).

The method of automatically generating feedback is by defining a list of
attributes (derived from the overall task) which indicate the actual skills
needed, and then showing the students which of the attributes they have
attained.

For the remainder of this section, we will give an example of a Linuxgym
exercise and explain its relationship with the skills being assessed.

Example: An exercise in data analysis

The students are setup with a Linux account on a server which has directories
of data to which they can apply their scripts, such as the data in the file called
femalenames.txt

/usr/local/linuxgym-data/census/femalenames.txt
Frequently Occurring First Names, US Census Bureau, 1990

MARY 2.629 1
PATRICIA 1.073 2
LINDA 1.035 3
… … …

Using this data as an example, the students are told to write a script whose
behaviour is described as follows:

Search Prefix Create a bash script called searchprefix.sh which takes two
arguments, a string and a file (in that order). The output should be each line
of the file which matches the string from the beginning of the line. For
example, given a string "ANA" the line starting with "ANABEL" will be printed,

but the line starting with "SUSANA" will not. (Hint: use grep and ^ to indicate
the beginning of the line).

Apart from the instructions there are “Links” to web-sites with relevant learning
materials, as well as “Rules” — points which assist the student in avoiding silly
errors, such as storing their script in the wrong directory.

To understand the function of Linuxgym, suppose the student’s solution is the
following script:

student@linuxgym:~/ch6-data$ cat searchprefix.sh
#!/bin/bash

grep $1 $2

Then when pressing the “Mark Question” button, the following group of
attributes is displayed:

File exists

 File is executable

The output of this script contains all necessary lines in some order

 The output contains some unnecessary lines

 Script behaviour is incorrect

From this the student can see that they are accidentally matching some lines
which are not those intended, but otherwise, the script is in the right location
and gets all of the necessary lines. The way this assessment takes place is by
Linuxgym executing the student’s searchprefix.sh on a hidden string and data
file, and comparing its behaviour with that of a correctly implemented script.

3. Outcomes

3.1 Advancement in knowledge of industry requirements

Although Linuxgym exercises involve actual scripting, there are essential
differences to the professional activities in this area, and it was our intention to
identify these differences in order to be able to evaluate the outcomes of using
Linuxgym as a formal assessment tool.

Firstly, the exercises presented are a small project. There is no technical
barrier to presenting the students with an entire assignment, but the teaching
methodology is aligned with providing more sounding-boards from which
feedback can be provided. Another important difference is that, while teachers
(and colleagues) are very concerned with qualitative aspects of the code, such
as its readability and maintainability, Linuxgym generally pays little attention to
these aspects unless they are objectively measurable — such as ensuring that
the correct language is used for the implementation. Finally, Linuxgym
provides a learning environment which displays links to relevant web pages,
and “rules” which keep at the forefront the assumptions it makes about the
student’s code. Overall, Linuxgym closes the gap between information that is
needed and locating it, as well as the gap between synthesizing and
evaluating it (Webber and Johnson, 2000).

A similarity between Linuxgym and the real-world is that the machinery
emulates a phase of the student’s code being used, providing the feedback
which would result from a line-manager noticing a bug and is therefore more
accurate than a tutor simply reading the code or using it only once. Unlike the
real-world, the student quickly gets a clear explanation of what is wrong with
their code’s behaviour.

Survey of the scripting skills in demand

Having understood the gaps between the Linuxgym technique of assessment
and experience in the real world, we also needed to determine its coverage –
the contents of the library.

Job advertisements indicate that the scripting skills mostly in demand are as
follows:

• Data mining for the financial market trading institutions — scanning
news services and modelling using rapid prototyping;

• Genome sequencing for the human genome project — sharing data from
differently designed databases in different laboratories;

• Translation of protocols for mobile telecommunications;
• System monitoring in network security; and
• Data merging and manipulation for web services.

Due to the diversity of these applications, the top level conceptual constructs
are not the same across the Unix scripting profession. It is therefore the
technical foundation which defines these skills and on which the formal
assessment must focus.

A survey of industry requirements for these technical skills was approached by
producing a list of ninety commands and activities (“tools”) split into the
following sections defining places where they are used:

• Command Line Interface;
• Managing files and directories;
• Information management;
• Bash scripting; and
• Data transfer.

Each tool was categorized by the participant as one of the following types:

• Pocket: The basic, “bread and butter” stuff. Tools used all the time
which everyone must know in order to survive.

• Toolkit: Less fundamental but still very useful. Things you should be
able to use without consulting the manual.

• Van: Tools in the van are ones you don't often use, but you should
be aware that they exist, understand what they're for, and able to
work out how to use them when the need arises.

• Shed: Other less important tools for which you would rarely find a
use.

In addition, we had the participants indicate their application areas to see
whether there would be any notable differences on the emphasis of different
skills. These application areas were aligned with those found in the job
advertisements, namely: system administration; networking; software
development; web services; data analysis; teaching; or other. The survey was
posted to discussion forums and mailing lists across the application areas.

There were 183 participants, most of them crossing several of the application
areas listed above. Although 83.6% select system administration, only 9%
work solely on this application. This application is followed by 64.5%
performing software development and 48.6% doing data analysis. The largest
number of participants (44.5%) has between 6 and 15 years experience as a
scripting expert, followed by 31.3% who have more than 15 years experience.

Agreements: There are many shell scripting languages available in Unix, and
there was some concern that the minor differences between these languages
would be an obstacle to agreed upon standards to scripting skills, however
84.7% indicate they are using Bourne-Again Shell (Bash) followed by 34.4%
using Bourne Shell (sh), and only 23.5% using Korn shell (which adheres to
the POSIX 2 standard). Therefore we regard Bash as the industry standard in
practice.

Disagreements: There were few topics on which there was great variance in
the way they were categorized from “pocket” to “shed”.

• Simple functions for minimizing the number of keystrokes at the
command-line;

• Whatis — a function which provides a summary of the man page;
• Emacs — a text editor which is more user-friendly than Vim.

These topics are very much based upon how the user performs various tasks,
rather than the outcome, and therefore these skills should not be assessed as
part of an accreditation. Further research is necessary to understand the
contexts which bring about the differing responses on the following
commands:

• Let and Printf — to perform and display the outcome of arithmetic
operations.

• Trap — a method of preventing users from aborting scripts to ensure
data integrity.

Summary: The skills which a scripting expert should have without having to
read the manual pages are:

• Methods for transferring data between computers and working over a
network (ssh, scp, sftp);

• Regular expressions for matching sets of strings;
• Vim — the main tool for text editing;
• Functions (such as grep and find) which search for data through file

systems and data streams;
• Piping and redirection — managing interaction of processes; and
• Structured programming using functions such as if, while, for and case.

Data manipulation and transformation in preparation for use with a database
or web system is a core activity of almost 50% of the respondents. Although
functions such as awk, col, comm, join and paste are necessary, there was
general agreement that the scripting expert needs access to the manual to
use them each time. As such, Linuxgym should not demand the use of these
functions without access to the manual.

3.2 Evaluation of Linuxgym

The formal evaluation of Linuxgym has been carried out by the Linux
Professional Institute (LPI) at its Europe, Middle-East and Africa summit held
in Utrecht, The Netherlands in November 2007. LPI is a not-for-profit
organization established in 1999 to promote and certify essential skills on
Linux and Open Source technologies through the global delivery of vendor-
independent exams. As defined at the outset of this project, the criteria which
have been verified by LPI are Linuxgym’s accuracy as a testing tool, and the
alignment of its content with industry standards. Aside from the formal
evaluation, the LPI committee and its exam delivery partners are also
considering Linuxgym as a tool to enable the expansion of their curriculum
beyond system administration, and into the area of coding.

Strengths

The main strength of Linuxgym is its combination of being both a formative
and summative assessment tool. At UTS Linuxgym has successfully been
used to increase both coverage and pass rate of large student cohorts. Over
three semesters, the undergraduate coverage — initially just copying and
editing files — has expanded to include writing complex scripts without a
noticeable change in the pass rate. In a postgraduate course where the
failure rate of the four preceding semesters was 30–50%, the first semester
using Linuxgym had a failure rate of almost zero with an average mark of over

75% for assignments — with very little change to the curriculum. In both cases
the cost/work overload of marking has been reduced.
Linuxgym has also been used for formative assessment at the University of
Sydney, and at the University of Portsmouth, UK where it has been adopted in
a course on System Administration — more specialised than the courses at
participating universities in Sydney:

Having used both the Redhat and LPI educational materials I have
adopted Linuxgym for my class, as it fills serious gaps both for
education, and assessment of these skills. Because learning scripting
skills requires a great deal of practice Linuxgym provides much more
helpful feedback than any staff member can offer. Moreover, the
exercises are a far more accurate representation of real world activities
than any of the assessment tools offered by those currently offering a
certification
.
Frank Margrave, Principal Lecturer, Department of Electronic and
Computer Engineering, University of Portsmouth.

Below is a sample of the anonymous comments of students using Linuxgym in
2007, 2008. See Appendix A for the statistical summary of the student survey.

I found Linuxgym a very easy and motivating way to learn Linux.

Really easy to use, and a very helpful learning aid.

It was the best educational method I have ever seen in UTS.

A creative way to learn by actually applying it as we would in the
workforce.

As one who never see Linux, before I think Linuxgym is a great learning
tool, specially for basic!!!

Linuxgym is a great pedagogical tool and complements any sound,
computer-oriented subject. It has certainly enhanced my experience on
Linux and has provided me with sufficient practical skills to perform
elementary and advanced tasks on the Linux CLI. Thank you.

Its the best way i've actually learnt how to use Linux compared to that
of TAFE. Linuxgym rules hands down.

Very enjoyable. I'm now considering recommissioning one of my older
computers at home as a Linux machine to keep in practice. Some of the
later exercises were very challenging, but I guess there has to be a
discriminator between "good" and "great".

Great system, really encouraged me to learn several things I've been
wanting to learn for a long time.

Weaknesses

The uptake in institutions outside of this project was certainly less than
expected, and the reference group meeting in February 2008 came to a clear
understanding of the problems which came about.

In technical terms the problems which came up were a consequence of
making the software available without excessive work for the lecturer.
Although running Linuxgym does not require a Linux based desktop computer,
the size of the software and complexity of installing it was an impediment to
students using it at home. The network requirements of the software require
cooperation of the university’s system administrators to modify various
network security settings. Although the solution to these issues is not
obvious, it is clear that the system administrators of the participating
institutions should have been major participants on the project.

In terms of coverage, although the results of the industry survey were very
clear, this was not influential enough to convince any of the partner
universities to align their curricula with the Linuxgym library — in spite of this
being a goal of the project. This reluctance is partly due to the speed at which
the necessary hands-on skill set changes within the IT industry, but equally
the need of universities to maintain links between its coursework curriculum
and research. While there is no simple solution to this problem, a well
established and stable Linuxgym certification supported by industry would
make university curriculum alignment more worthwhile, which will happen if
the Linuxgym library withstands the test of time.

4. Summary and future goals

Although the university uptake of Linuxgym was less than expected, the
significant improvement in the students’ learning experience, an increase in

the material covered, and a decrease in the teacher’s workload indicates that
a few changes to Linuxgym will rapidly increase its uptake.

In technical terms, the machinery is being redesigned to avoid the necessity of
any software being installed on the student’s computers without impacting on
the server’s performance.

It has become clear that the curriculum is the harder problem to solve and
requires two independent approaches. The first approach is that Linuxgym’s
content — which has been validated and improved by a survey of industry
needs — must be made available for a certification exam. This will be made
possible by the technical improvements above, and will be accessible across
the IT professional and education sector across the globe. This should suffice
in convincing universities to align their curricula with industry’s needs.

Another technical improvement — of disconnecting the exercise environment
from the management of questions and feedback — will enable Linuxgym to
address a broader set of learning goals.

REFERENCES

Book

Ramsden, P., 2003. Learning to Teach in Higher Education. Routledge
London, UK.

Journals publications

Brennedsen, Jens and Michael E. Caspersen, 2007, Failure rates in
introductory programming, ACM SIGCSE Bulletin, Volume 39 , Issue 2,
pp.32—36.

Robins, A. et al., 2003. Learning and Teaching Programming: A Review and
Discussion. Computer Science Education, Vol. 13, No. 2, pp 137–172.

Nunes, M and M. McPherson, 2006. Learning support in online constructivist
environments in information systems. HEA-ICS Italics, Electronic Journal, Vol.
5, No. 2, pp 1–11.

McCracken, M. et al., 2001. A multi-national, multi-institutional study of
assessment of programming skills of first-year CS students. ACM SIGCSE
Bulletin, Vol. 22, No, 4, pp 125–180.

Webber, S and B. Johnston, 2000. Conceptions of Information Literacy: New
Perspectives and Implications. Journal of Information Science, Vol. 26, No. 6,
pp 381–397.

Conference paper

Solomon, A., D. Santamaria and R. Lister, Automated Testing of Unix
Command-line and Scripting Skills (2006), 7th International Conference on
Information Technology Based Higher Education and Training.

Appendix A: Student Survey

